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On the drag of a flat plate at zero incidence in 
almost-free-molecule flow 

By V. C.  LIU 
University of Michigan Research Institute, Ann Arbor 

(Received 11 August 1958) 

A physical theory is proposed for the skin friction on a flat plate at zero incidence 
in the transition flow regime, i.e. in the flow of a moderately rarefied gas. The ratio 
of the molecular mean free path to the characteristic size of the plate is assumed 
of order unity or larger. A general formula for the perturbation to the well-known 
friction of the free-molecule theory is given. This perturbation is attributed to the 
intermolecular collisions which are neglected on the basis of the free-molecule 
hypothesis. The expected rate of collisions are calculated for rigid spheres, using 
the classical kinetic theory. 

Although this is intended as an approximate theory, the theoretical results 
check surprisingly well with the limited experimental data that are available. 
The present theory shows that the ratio of the Reynolds number to the Mach 
number squared is the governing parameter for determining the intermolecular 
collision effect on skin friction in the transition flow regime. 

1. Introduction 
The treatment of rarefied gas dynamics has been greatly simplified by the use 

of the free-molecule hypothesis when the molecular mean free path h is many 
times greater than the characteristic dimension L of the particular flow field. In  
this hypothesis it is assumed that the gas dynamic effects of collisions between the 
molecules incident on and reflected from a surface element are negligible com- 
pared to those between the incident molecules and the surface element. This basic 
postulate allows the molecular motion of the incident stream to be treated as 
having the Maxwellian (equilibrium) distribution. Gas dynamic problems of this 
nature are amenable to solution provided the mechanism of molecular reflexions 
at the solid surface is known. 

Similarly, treatment of gas dynamic problems in the slip flow regime, where the 
ratio AIL is much less than unity, has been moderately successful, a t  least in a few 
specific cases (Schaaf 1956). 

On the other hand, the least rewarding efforts have been in the study of flow 
phenomena in the transition regime, where h is of the same order as L. Mathe- 
matically, the classical approaches to such rarefied gas problems always start with 
the Maxwell-Boltzmann equation for the molecular distribution function. The 
general technique (Jaff6 1930; Keller 1948; Wang Chang & Uhlenbeck 1954) is 
based on a perturbation expansion of the Maxwell-Boltzmann equation in 
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powers of Llh. The calculations are in general formidable and few results of direct 
aerodynamic interest are available. 

Unfortunately, experimental investigations in the transition flow regime have 
also been fraught with difficulties. From the astronautical point of view, the flow 
conditions existing in the transition regime correspond approximately to the case 
of ballistic missile flight at an altitude of about 100 km. 

It appears that for the purpose of elucidating the physical mechanism of the 
phenomena, one might use a physical approach entailing a slight relaxation of the 
conditions imposed by the free-molecule hypothesis. The proposed principle of 
treating this ' almost-free-molecule flow ' starts with the following assumptions: 
(1) The rate of collisions between the molecules incident on and reflected from 
a surface element is small compared to that between the incident molecules and 
the surface element in question. ( 2 )  The probability of a reflected molecule 
colliding twice with the incident molecules before it is deflected away is negligible 
compared to the probability of its colliding only once. The single-collision* effects 
are calculated on the basis of Maxwellian distribution for the molecular velocities. 
In  other words, the theory of the almost-free-molecule flow is essentially a higher 
order iteration of the corresponding free-molecule analysis. The intermolecular 
collisions are calculated for rigid spheres based on the classical kinetic theory. (3) 
The molecules are reflected diffusely from the surface without preferred direction. 

As in other mean-free-path methods of treating kinetic problems, the almost- 
free-molecule calculation is expected to indicate quickly the order of magnitude 
of certain gas dynamic quantities in question and their functional dependence 
upon molecular variables. It should be kept in mind, however, that this approxi- 
mate theory, like many other elementary theories of complicated phenomena, can 
by no means be regarded as a complete equivalent of an exact theory such as the 
yet-to-be-obtained solution to the Maxwell-Boltzmann equation for the case of 
a transition flow along a plate. Nevertheless, the results predicted by the theory 
for both the drag of a flat plate at zero incidence and the Pitot pressure (Liu 1957) 
in the transition flow regime were found to show remarkable consistency with the 
limited measurements available. 

2. Flat plate in a free-molecule flow 
Consider a flat plate situated in a free stream of infinite extent with mean 

velocity V,. If the intermolecular collisions occurring near the plate are negligible, 
we may use the Maxwellian distribution for the velocities of the impinging 
molecules relative to an observer moving with the stream. Assuming that the 
plate is in the y, z-plane such that the direction of flow makes an angle 01 with the 
y-axis and is perpendicular to the z-axis, we have the distribution function (Jeans 

f = (,83/7r9 exp { -,@[(u - V, sin 0 1 ) ~  + (v + V, cos a)2 +UP]},  1925) 

where /3 = (2RT,)-* denotes the reciprocal of the most probable velocity of the 
molecules relative to the mean motion of the gas; TI, the free-stream temperature; 
and R,  the gas constant. 

very-high-speed flow. 
* Heineman (1948) earlier used a similar idea in treating the drag on a flst blunt body in 
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The number of molecules, Ni, that are incident on a unit area per unit time is 
given by 

where n, denotes the number density of molecules in the free stream. Equation 
(2.2), on integration, becomes 

Ni = n, {exp(-52,sin2a)+JnSlsina[l+ erf(X,sina)]>, (2.3) (E)* 
where 8, = V,/(2RTl)*, and subscript 1 denotes the free-stream condition. 

on the plate, we have 
To calculate the shearing stress, ri, due to the impact of the incident molecules 

ri = JOm n,muvf dudvdw, 

where m denotes the molecular mass. For the special case where 01. = 0, 
ra/gpl V t  = l/,/n 8, (Patterson 1956), where p1 denotes the free-stream density. 

If the molecules are reflected diffusely from the plate, 7,. = 0 (where 7,. denotes 
the shearing stress due to the reflected molecules), since no preferred direction 
exists. Thus, under the free-molecule hypothesis, the drag coefficient of a flat 

3. Rate of intermolecular collisions and loss of shearing stress 
It is obvious that loss of shearing stress on the plate can result when the incident 

molecules are prevented from reaching the plate by intermolecular collisions. On 
the other hand, the molecules emerging from such collisions may still strike the 
plate and thereby contribute additional shearing stress. From this it follows that 
in an almost-free-molecule flow the net loss of shearing stress (relative to its 
' free-molecule ' value) due to the intermolecular collisions is equal to the difference 
between these two aforementioned contributions. 

To calculate the potential contribution to shearing stress by the incident 
molecules about to collide with the diffusely reflected molecules, we first need to 
know the rate of such intermolecular collisions for each incident molecule. Let 
ci denote the absolute velocity of a molecule incident upon a plate, no and co 
denote, respectively, the number density and the mean velocities of molecules 
re-emitted randomly from the plate. If cT represents the mean relative velocities 
of collisions between the incident molecule, with velocity ci, and the diffused 
molecules, with a mean velocity Eo,  we have the expected collision rate (Kennard 
1938) 

where m c 2  denotes the collision cross-section of the equivalent rigid spheres. 
Since 
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where 8 = 8, + 8, (see figure l), and 

we have from (3.1) 
C,Z = ~ ~ + C ; + ~ C , ~ , ~ O ~ B ,  (3.3) 

(3.4) 

Note that the term 2(C,/ci)/( 1 + C , / C ~ ) ~  is always small compared to unity. We 
can obtain a fair approximation by retaining the first-order terms only in the 
power series expansion of E, in equation (3.4). The approximate rate of collisions 
at the plate becomes 

E - -  , - ira 2 no(ci+Fo)(sin8i+cos8i). (3.5) 

FIUURE 1. Velocity vectors of the molecular motion of a gas 
flowing along a flat plate. 

At distance x from the plate, the collision rate is reduced by the following 
factors: (1) the molecular scattering effect, exp ( -x /h , ) ;  ( 2 )  the bilateral free 
expansion of the reflected molecules, bL2/(x + L)  ( x  + bL),  where b denotes the 
aspect ratio of the span to the chord of the plate (see figure 1). Therefore, the 
likelihood of collisions by an incident molecule between distances x and x + dx  
becomes 

dx $bL2n-a2no ax 
Edt = E- = e-x’hl (ci + co) (sin 8, + cos 8,) - U . (3.6) u ( x + L ) ( x + b L )  

If all the collided molecules are deflected away from the plate, we can calculate 
the potential loss of shearing stress with the use of equations (2.4) and (3.6). To 
avoid mathematical complexity, we can get a fair approximation by using the 
mean incident velocity [equation (2.3)] at a given angle Bi without directly taking 
into account the random distribution of the molecular velocities. To carry the 
approximation further, we consider only those intermolecular collisions that 
occur in the semi-infinite region based on the plate. 
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If there were no collisions, the tangential momentum integral of the incident 
molecules that would have hit the plate can be written as 

FIGURE 2. G-function for a plate of infinite span ( b  = a). 

where a, = tan-l(y/x), a2 = tan-l[(L-g)/x], and ci is taken to  be the mean 
velocity 

Ei = (=) {exp ( - 8; sin2 Oi) + &- 8, sin Oi[l + erf (8, sin O,)]}. (3.8) 

For the case where the speed ratio 8, is smaller than unity, we may approximate 

RT, * 

Z$ given in equation (3.8) by the power series 
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With the approximate expression for C,, as given in equation (3.9), the multiple 
integrations of equation (3.7) can be performed. Thus, 

rll = - +rrY%,p, V;(L/Sf) C, (3.10) 

where G is a function of S,, b and L/h, (see figures 2 and 3). 

0 0 2  0.4 
S1 

5 

FIUURE 3. G-function for a square plate ( b  = 1). 

(i) For the case b = 03, 

1 + t 2  

(3.11) 



Drag of a $at plate in almost-free-molecule flow 487 

(ii) For the case b = 1, 

x (3.12) 

4. Contribution to the shearing stress by the scattered molecules 
A specific difficulty of the present problem is the determination of the shearing 

stress, T ~ ~ ,  on the plate due to the impact of the molecules emerging from the 
intermolecular collisions. Before entering into this determination, we wish to 
emphasize that these evaluations are mere approximations. 

Q Q 

FIGURE 4. Velocity vector diagram of molecular encounters between an 
incident molecule and the molecules reflected from a plate. 

We begin with a theorem of Maxwell (Jeans 1925). If two molecules collide with 
such velocities that their centre of gravity is stationary before collision and, 
therefore, also after collision, then all directions are equally probable for the 
velocity of either molecule following collision. From this it follows that, if two 
molecules collide in any way, the expected velocity of either is exactly equal to the 
velocity of the centre of gravity of the colliding pair. 

Consider an incident molecule A with velocity ci which is represented by OA in 
figure 4 .  Let Co, represented by OB, be the velocity of a reflected molecule B from 
the plate. Their relative velocity is therefore represented by AB; the velocity of 
the centre of gravity, by OP, where P is the mid-point of AB. The expected 
velocity of A ,  emerging from collision with B, is represented by OP. 

In  the present analysis of skin friction, we are concerned primarily, though not 
exclusively, with the component of OP along the plate QQ' since the tangential 
momentum transfer to the plate is of particular interest. By reason of symmetry 
in molecular distributions above and below the plate, we can determine the 
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with slip boundary (Schaaf & 

. /(Re)/M, 

FIGURE 5. Comparison of theoretical and measured values of CD/CDF ( b  = co is assumed 
in the almost-free-molecule-flow analysis). 

J(Re)lM, 

FIGURE 6. Comparison of theoretical and measured values of CD/CDF ( b  = 1 is assumed 
in the almost-free-molecule-flow analysis). 
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expectation of the final velocity of A by averaging the components of the velocity 
OP over all possible directions for OB. Now the similarity can be established 
between the analysis herein for the expected final velocity of A and the classical 
calculation for the persistence of molecular velocities in the kinetic theory of gases 
(Jeans 1925). After the collision with another randomly moving molecule of equal 
size, the velocity of a given molecule will, on the average, still retain a component 
in the direction of its original motion. This characteristic is called the persistence 
of velocities after collision. It has been shown by Jeans (1925) approximately, and 
by Chapman & Cowling (1952) exactly, that the mean persistence, for identical 
molecules in collisions, is equal to 0-406 times the original velocity. 

Provided that the above-mentioned hypothesis is valid, the mean expected 
velocity of the centre of gravity of molecules A and B will be equal to 0 . 4 0 6 ~ ~  in 
the direction OA. From this it follows that the additional shearing stress, 710, to 
the plate due to the impact of the molecules (both A and B)  emerging from the 
intermolecular collisions will amount to approximately 81.2 % of T~~ (see equa- 
tion 3.10). 

5. The drag coefficient of a flat plate 
Given the intermolecular collision effect on skin friction of a surface as worked 

out in $9 3 and 4, the drag coefficient, C,, of a flat plate at zero incidence in an 
almost-free-molecule flow follows from (2.5). Thus 

C, = (2/JnS1) - 0.376n(r2no(L/S;) G .  (5.1) 

Dividing equation (5.1) by C,, leads to 

cD/cDp = 1 - 0.188nb2no(L/S;) G .  

In  the case when To = T, and, therefore, no = n,, and since 

J2nrcr2n1 = 1/A, S, = (y /2)&M1 and Llh, = 0-499(8/ny)*Re/Ml, 

where MI and Re denotes the free-stream Mach number and Reynolds number 
respectively, we have 

C,/C,, = 1 - 0*188(Re/M;) G .  (5.3) 

The comparison of C,/C,, computed from equation (5.3), for a two-dimensional 
plate (b  = 00) and asquare plate (b  = 1 )  a t  various values of S, and L/h,, with 
those obtained from measurements in a low-density wind tunnel (Schaaf & 
Sherman 1954) are shown in figures 5 and 6, respectively. 

6. Conclusions 
Considering the number of serious simplifications made in the formulation 

process, we cannot expect the theory to predict results with greater accuracy than 
the right order of magnitude. The surprisingly close agreement between the theory 
and the limited measurements that are available should be taken with guarded 
optimism until a wider variety of experimental results is available. 

The present theory does show that Re/M2 is the governing parameter for the 
determination of the intermolecular collision effect on skin friction of a shear flow 
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in the transition regime. It is of interest to compare the present result on inter- 
molecular collision effect with that on Pitot pressure in an almost-free molecule 
flow (Liu 1957). In  the case of Pitot pressure, ReIlM, instead of ReIM; becomes the 
corresponding governing parameter. This exhibits the difference in physical 
mechanisms between the shear flow effect (skin friction) and the impact flow 
effect (Pitot pressure) in the transition regime. 

The research reported in this paper has been supported by the Meteorological 
Branch of the U.S. Army Signal Corps under Contract No. DA-36-039-SC-64659 
with The University of Michigan. The author wishes to record his indebtedness 
to Prof. Sydney Chapman for his reading of the manuscript and his stimulating 
discussions of this work; and to Mr Howard Jew for assistance in the numerical 
computations. 
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